Q.

Let f(x) be an even function such that ∫0∞ f(x)dx=π2, then the value of  the definite integral ∫0∞ fx−1xdx is equal to

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

π

b

π2

c

3π2

d

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let I=∫0∞ fx−1xdx…………..(1) Put x=1t⇒dx=−1t2dtFrom⁡(1):I=∫∞0 f1t−t−dtt2  Use ∫ab f(x)dx=−∫ba f(x)dx⇒I=∫0∞ f1t−tdtt2⇒I=∫0∞ ft−1tdtt2 (∵f is even function )⇒I=∫0∞ fx−1xdxx2…………...(2)Adding equations (1) & (2) ⇒2I=∫0∞ fx−1xdx+∫0∞ fx−1xdxx2⇒2I=∫0∞ fx−1x1+1x2dx Put x−1x=u⇒1+1x2dx=du∴2I=∫−∞∞ f(u)du ∵ If f is even ∫−aa f(x)=2×∫0a f(x)dx=2∫0∞ f(x)dx=2π2⇒2I=π∴I=π2
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon