Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let f(x) be an even function such that ∫0∞ f(x)dx=π2, then the value of  the definite integral ∫0∞ fx−1xdx is equal to

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

π

b

π2

c

3π2

d

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let I=∫0∞ fx−1xdx…………..(1) Put x=1t⇒dx=−1t2dtFrom⁡(1):I=∫∞0 f1t−t−dtt2  Use ∫ab f(x)dx=−∫ba f(x)dx⇒I=∫0∞ f1t−tdtt2⇒I=∫0∞ ft−1tdtt2 (∵f is even function )⇒I=∫0∞ fx−1xdxx2…………...(2)Adding equations (1) & (2) ⇒2I=∫0∞ fx−1xdx+∫0∞ fx−1xdxx2⇒2I=∫0∞ fx−1x1+1x2dx Put x−1x=u⇒1+1x2dx=du∴2I=∫−∞∞ f(u)du ∵ If f is even ∫−aa f(x)=2×∫0a f(x)dx=2∫0∞ f(x)dx=2π2⇒2I=π∴I=π2
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring