Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let fx=sin-11-x×cos-11-x2x×1-x, where {x} denotes the fractional part of x. R=limx→0+  fx  is equal to L=limx→0-  fx is equal toWhich of the following is true?

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

π2

b

π22

c

π2

d

e

P2

f

π22

g

π2

h

i

cos L < cos R

j

tan (2L) < tan 2R

k

sin L > sin R

l

None of these

answer is , , .

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let  fx=sin-11-x×cos-11-x2x×1-x∴   limx→0+  fx  =  limh→0  f0+h         =limh→0  sin-11-0+hcos-11-0+h20+h1-0+h         = limh→0  sin-11-hcos-11-h2h1-h         =limh→0  sin-11-h1-h   limh→0  cos-11-h2hIn   second   limit,  put   1-h  =  cosθ.  Thenlimx→0+  fx=limh→0  sin-11-h1-h  limθ→0   cos-1cosθ21-cosθ                   =limh→0  sin-11-h1-h    limθ→0  θ2sinθ2 =π2    θ >0and    limx→0-  fx  =  limh→0  f0-h                         =  limh→0  sin-11-0-hcos-11-0-h20-h1-0-h                          =  limh→0  sin-11+h-1cos-11+h-12-h+11+h-1                             =limh→0  sin-1hh  ..  cos-1h21--h                            =  1π22  =π22Let fx=sin-1x-x×cos-11-x2x×1-x∴   limx→0+  fx  =  limh→0  f0+h         =limh→0  sin-110+hcos-11-0+h20+h1-0+h         = limh→0  sin-11-hcos-11-h2h1-h         =limh→0  sin-11-h1-h   limh→0  cos-11-h2hIn   second   limit,  put   1-h  =  cosθ.  Thenlimx→0+  fx=limh→0  sin-11-h1-h  limθ→0   cos-1cosθ21-cosθ                   =limh→0  sin-11-h1-h    limθ→0  θ2sinθ2     θ >0and    limx→0+  fx  =  limh→0  f0-h                         =  limh→0  sin-11-0-hcos-11-0-h20-h1-0-h                          =  limh→0  sin-11+h-1cos-11+h-12-h+11+h-1                             =limh→0  sin-1hh  ..  cos-1h21--h                            =  1π22  =π22Let fx=sin-1x-x×cos-11-x2x×1-x∴   limx→0+  fx  =  limh→0  f0+h         =limh→0  sin-110+hcos-11-0+h20+h1-0+h         = limh→0  sin-11-hcos-11-h2h1-h         =limh→0  sin-11-h1-h   limh→0  cos-11-h2hIn   second   limit,  put   1-h  =  cosθ.  Thenlimx→0+  fx=limh→0  sin-11-h1-h  limθ→0   cos-1cosθ21-cosθ                   =limh→0  sin-11-h1-h    limθ→0  θ2sinθ2     θ >0and    limx→0+  fx  =  limh→0  f0-h                         =  limh→0  sin-11-0-hcos-11-0-h20-h1-0-h                          =  limh→0  sin-11+h-1cos-11+h-12-h+11+h-1                             =limh→0  sin-1hh  ..  cos-1h21--h                            =  1π22  =π22
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring