Evaluation of definite integrals

Unlock the full solution & master the concept.

Get a detailed solution and exclusive access to our masterclass to ensure you never miss a concept
By Expert Faculty of Sri Chaitanya
Question

Let f(x)=sinx+r=02cosx+2 rπ3 

g(x)=cosx+r=02sinx+2 rπ3 

h(x)=max{f(x),g(x)}

NA
Question

ππg{f(x)} sin 2x dx  is equalent to

Solution

f(x)=sinx+r=02cosx+23=sinx+cosx+cosx+2π3+cosx+4π3

=sinx+cosx212cosx=sinx

similarly g(x) = cosx

ππg {f(x)} sin2x dx=ππcos(sinx)sin2x dx=0 

since integrand is odd

Question

π/4π[ h(x) ] {f(x)}2dx where [.] denotes greatest integer function is

Solution

π/4π[h(x)]{f(x)}2dx=x/4π[sinx]sin2xdx=0

Question

0π{g(x)}337dx=

Solution

0π{g(x)}337dx=0πcos337xdx=0πcos337(πx)dx=0πcos337xdx 0πcos337xdx=0


NEW

Ready to Test Your Skills?

Check Your Performance Today with our Free Mock Tests used by Toppers!

prepare smarter

with latest test series, free mock tests, and classes
NEET AITSIIT JEE AITSLive ClassFree Mocks

ctaimg

Similar Questions

 Let a non constant polynomial f satisfies the relation f(f(f(x)))+(1p)f(x)=3

xR, where p is some real number. If leading coefficient of f(x) is negative and f(0)=4 then 11f1(x)dx is equal to 

Want to Improve your productivity
talk to our academic experts now !!

counselling
india
+91

whats app icon