First slide
Theory of expressions
Question

Let f(x)=4x24ax+a22a+2 such that minimum value of f(x) for x[0,2] is equal to 3.

Moderate
Question

Number of values of a for which global minimum value, that is equal to 3 for x[0,2], occurs at the end point of interval [0, 2] is

Solution

f(x)=4x24ax+a22a+2 represents a parabola whose vertex is at a2,22a.

Case I: 0<a2<2

In this case, f(x) will attain the minimum value at x=a2.

Thus, fa2=3.

 3=2a+2 a=12  (Rejected) 

Case II: a22

In this case, f(x) attains the global minimum value at x = 2.

Thus, f(2) = 3.

 3=168a+a22a+2 a=5±10 So,  a=5+10

Case III: a20

In this case, f(x) attains the global minimum value at x = 0.

Thus, f(0) = 3.

 3=a22a+2 a=1±2 So,  a=12

Hence, permissible values of a are 12 and 5+10.

f(x)=4x24ax+a22a+2 is monotonic in [0, 2].

Hence, point of minima of function should not lie in [0, 2].

Now, f'(x) = 0

 8x4a=0 x=a/2

If a2[0,2], then a[0,4].

For f(x) to be monotonic in [0,2],a[0,4]. So, a0 or a4.

Question

Number of values of a for which global minimum value, that is equal to 3 for x[0,2], occurs for the value of x lying in (0, 2) is

Solution

f(x)=4x24ax+a22a+2 represents a parabola whose vertex is at a2,22a.

Case I: 0<a2<2

In this case, f(x) will attain the minimum value at x=a2.

Thus, fa2=3.

 3=2a+2 a=12  (Rejected) 

Case II: a22

In this case, f(x) attains the global minimum value at x = 2.

Thus, f(2) = 3.

 3=168a+a22a+2 a=5±10 So,  a=5+10

Case III: a20

In this case, f(x) attains the global minimum value at x = 0.

Thus, f(0) = 3.

 3=a22a+2 a=1±2 So,  a=12

Hence, permissible values of a are 12 and 5+10.

f(x)=4x24ax+a22a+2 is monotonic in [0, 2].

Hence, point of minima of function should not lie in [0, 2].

Now, f'(x) = 0

 8x4a=0 x=a/2

If a2[0,2], then a[0,4].

For f(x) to be monotonic in [0,2],a[0,4]. So, a0 or a4.

Question

Values of a for which f(x) is monotonic for x[0,2] are given by

Solution

f(x)=4x24ax+a22a+2 represents a parabola whose vertex is at a2,22a.

Case I: 0<a2<2

In this case, f(x) will attain the minimum value at x=a2.

Thus, fa2=3.

 3=2a+2 a=12  (Rejected) 

Case II: a22

In this case, f(x) attains the global minimum value at x = 2.

Thus, f(2) = 3.

 3=168a+a22a+2 a=5±10 So,  a=5+10

Case III: a20

In this case, f(x) attains the global minimum value at x = 0.

Thus, f(0) = 3.

 3=a22a+2 a=1±2 So,  a=12

Hence, permissible values of a are 12 and 5+10.

f(x)=4x24ax+a22a+2 is monotonic in [0, 2].

Hence, point of minima of function should not lie in [0, 2].

Now, f'(x) = 0

 8x4a=0 x=a/2

If a2[0,2], then a[0,4].

For f(x) to be monotonic in [0,2],a[0,4]. So, a0 or a4.

Get Instant Solutions
When in doubt download our app. Now available Google Play Store- Doubts App
Download Now
Doubts App