Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let f(x)=x2+b1x+c1,g(x)=x2+b2x+c2. Let the real roots of f(x)=0 be α,β and real roots of g(x)=0 be α+h,β+h.The least value of f(x) is −1/4. The least value of g(x) occurs at x = 7/12.The least value of g(x) is The value of b2 isThe product of the  roots of g(x) = 0 are

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

−14

b

-1

c

−13

d

−12

e

-5

f

9

g

-8

h

-7

i

12

j

7

k

5

l

1

answer is , , .

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

(β−α)=((β+h)−(α+h))(β+α)2−4αβ=[(β+h)+(α+h)]2−4(β+h)(α+h)−b12−4c1=−b22−4c2D1=D2The least value of f(x) is−D14=−14⇒D1=1 and D2=1Therefore, the least value ofg(x) is −D24=−14The least value of g(x) occurs at −b22=72 or b2=−7⇒ b22−4c2=D2 or   49−4c2=1 or 484=c2 or c2=12 ⇒ x2−7x+12=0 or x=3,4The least value of g(x) occurs at −b2 2=72  or b2=−7⇒b22−4c2=D2or  49−4c2=1  or  484=c2  or  c2=12⇒x2−7x+12=0  or  x=3,4 b22−4c2=D2or  49−4c2=1  or  484=c2  or  c2=12
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon