Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let f(x)=xeax;               x≤0x+ax2−x3;    x>0   where a ' is a positive constant. Find  the interval in which f′(x) is increasing.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

−2a  ,  a3

b

−2a  ,  a3

c

2a  , −−a3

d

2a  ,  −a3

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

f′(x)=eax+axeax ;x≤01+2ax−3x2;x>0f′′(x)=2aeax+a2xeax;x≤02a−6x;x>0 For f′(x) to be an increasing function f′′(x)≥0 i.e.,  aeax(2+ax)≥0⇒x≥−2a2a−6x≥0⇒x≤a3∴ The int erval inwhich f′(x) is increasing is −2a,a3
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring