Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let f(x)=(1+x)n−(1+nx),x∈[−1,∞), then f

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

has an absolute maximum at x = 0

b

has neither absolute maximum nor absolute minimum at x = 0

c

has an absolute minimum at x = 0

d

does not have absolute minimum at x = 0

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

f(x)=(1+x)n−(1+nx)⇒f′(x)=n(1+x)n−1−1. Now for x=0,f′(0)=0 and for x>0,f′(x)>0.  Thus _f increases on [0,∞) i.e. f(x)≥f(0) for x∈[0,∞). For −1≤x<0,0≤1+x<1 so (1+x)n−1<0.  So f decreases on  [-1. 0) i.e. f(x)≥f(0)=0 for x∈[−1,0). Hence f has an absolute minimum at x = 0
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring