Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let  f:X→Y  be onto. Also, let A, B be subsets  of X and C,D be subsets of Y. Then

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

f−1(C∪D)=f−1(C)∪f−1(D)

b

f−1(C∩D)=f−1(C)∩f−1(D)

c

f(A∪B)=f(A)∪f(B)

d

f(A∩B)=f(A)∩f(B)

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

(a)  y∈f−1(C∪D)⇔f(y) ∈C∪D⇔f(y)∈D  or  f(y)∈C ⇔y∈f−1 (C)  or  y∈f−1(D) ⇔y∈f−1(C)∪f−1(D)                                            (b)  Similarly f−1(C∩D)=f−1(C)∩f−1(D) c) y∈f(A∪B)⇔∃ x∈A∪B such that f(x)=y⇔f(x)=y  for some x∈A  or  x∈B   ⇔y∈f(A)  or  y∈f(B) ⇔y∈f(A)∪f(B) d) f(A∩B)  is only a subset of f(A)∩f(B)  but may not be equal to f(A)∩f(B) Take X={1,2,3,4},   y={a,b,c}  and  f={(1,a),(2,b),(3,b),(4,c)} Then f is onto. If A={1,2}  and  B={3,4} , thenf(A)={a,b}  and  f(B)={b,c} f(A)∩f(B)={b}≠f(A∩B),  since A∩B=θ
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
Let  f:X→Y  be onto. Also, let A, B be subsets  of X and C,D be subsets of Y. Then