Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let f(x) be a cubic polynomial with leading coefficient unity such that f(a) = b  and f′(a)=f′′(a)=0. Suppose g(x)=f(x)−f(a)+(a−x)f′(x)+3(x−a)2 for which  conclusion of Rolle's theorem in [a,b] holds at x=2, where 2∈(a,b) The value of f′′(2) , is  The value of definite integral ∫ab f(x)dx is λμ (where λ&μ are relatively prime numbers), then :

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

1

b

4

c

6

d

0

e

λ+μ=385

f

λ+μ=380

g

λ+μ=6

h

λ−5μ=0

answer is , .

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

We have, f(x)=(x−a)3+b----1 Since,  Rolle's theorem   is applicable to g(x) at x=2 So, g(a)=g(b) and g′(2)=0⇒0=f(b)−f(a)+(a−b)f′(b)+3(b−a)2 and (a−2)f′′(2)+6(2−a)=0  ⇒ f′′(2)=6,(a≠2) We have, f(x)=(x−a)3+b----1 Since,  Rolle's theorem _ is applicable to g(x) at x=2 So, g(a)=g(b) and g′(2)=0⇒0=f(b)−f(a)+(a−b)f′(b)+3(b−a)2 and (a−a)f′′(2)+6(2−a)=0f′(b)=f(b)−f(a)(b−a)+3(b−a)→2 and f′′(2)=6,(a≠2) from (i), f′′(x)=6(x−a) and f′′(2)=6⇒6(2−a)=6⇒a=1 also, from (1) and (2) (b−a)=3/2⇒b=5/2∴∫15/2 (x−1)3+5/2dx=32164
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring