Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let G1,G2,G3 be the centroids of the triangular faces OBC,OCA,OAB of a tetrahedron OABC . If V1 denote the volume of the tetrahedron OABC and V2 that of  the parallelopiped with OG1,OG2,OG3 as three  concurrent edges, then :

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

4 V1  = 9 V2

b

9 V1  = 4 V2

c

3 V1  = 2 V2

d

3 V2  = 2 V1

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Taking O as the origin,let the position vectors of A,B and C be a→,b→ and c→ respectively. Then the position vectors ofG1,G2 and G3 are b→+c→3,c→+a→3 and a→+b→3  respectively. ∴                      V1  =  16 a→ b→ c→ and  V2=OG1→OG2→OG3→ Now,  V2=OG1→OG2→OG3→⇒                    V2  = b→ +c→3 c→ +a→ 3 a→ +b→3⇒                 V2  =127 b→ +c→  c→ + a→ a→ +b→⇒                 V2  =227  a→ b→ c→⇒                 V2  =227 × 6V1   ⇒  9 V2 = 4V1 Hence,   (a) is the correct answer.
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring