Q.

Let k be an integer such that the triangle with vertices (k, −3k),(5, k) and (−k, 2) has area 28 sq. units. Then the orthocentre of this triangle is at the point:

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

(2,−1/2)

b

(1,3/4)

c

(1,−3/4)

d

(2, 1/2)

answer is D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let ABC be the triangle the coordinates of whose vertices are ;4 (k, -3k), B, (5, k)  and  C(-k, 2). It is given that Area of∆ABC = 28 sq. units =12k    −3k    15    k    1−k    2    1=±28⇒ 12k    −3k    15−k    4k    0−2k    2+3k    0=±28=(5−k)(2+3k)+8k2=±56=5k2+13k+66=0 or 5k2+13k−46=0⇒5k2+13k−46=0     ∵5k2+13k+66=0 has imaginary roots ⇒(k−2)(5k+23)=0⇒k=2 [∵k∈Z]Hence, the coordinates of vertices are A ( 2, - 6), B (5, 2) and(−2, 2)The equations of altitudes through vertices A. andC are .:x= 2 and 3x + By -10 = 0 respectively. These two altitudes intersect : (2, 1/2). Hence, the coordinates of the orthocentre are ( 2, 1/ 2).
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon