Q.

Let n=2015 The least positive integer k for which kn2n2−12n2−22n3−32…n2−(n−1)2=r!  for some positive integer r is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

2014

b

2013

c

1

d

2

answer is D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

We can rewrite the given expression as kn2(n−1)(n+1)(n−2)(n+2)(n−3)(n+3)……….(n+n−1)(n−n+1)=r!⇒kn(1)(2)…(n−1)n(n+1)(n+2)…(2n−1)=r!⇒kn(2n−1)!=r!∴ To convert L.H.S. to a factorial, we shall requirek = 2 which will convert it into (2n)!
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let n=2015 The least positive integer k for which kn2n2−12n2−22n3−32…n2−(n−1)2=r!  for some positive integer r is