Q.

Let a non constant polynomial f satisfies the relation f(f(f(x)))+(1−p)f(x)=3∀x∈R, where p is some real number. If leading coefficient of f(x) is negative and f(0)=4 then ∫−11 f−1(x)dx is equal to

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 32.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Degree is 1⇒f(x) must be linear  Let f(x)=ax+4⇒f(f(f(x)))=a3x+4a2+4a+4⇒a3x+4a2+4a+4+(1−p)(ax+4)=3, ∀x∈R⇒a3+(1−p)a=0⇒a2=p−1 4a2+4a+4+4(1-p)=3-4(1-p) +4a+4+4(1-p)=34a=-1⇒a=-14f(x)=-14x+4f-1(x)=4(4-x)
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Let a non constant polynomial f satisfies the relation f(f(f(x)))+(1−p)f(x)=3∀x∈R, where p is some real number. If leading coefficient of f(x) is negative and f(0)=4 then ∫−11 f−1(x)dx is equal to