Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let S1≡x2+y2-4x-8y+4=0 and S2 is its image in the line y=x. The radius  of the circle touching y=x at (1,1) and orthogonal to S2 is 3λ, then λ2+2=

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 6.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Centre of circle S1=(2,4) Centre of circle S2=(4,2)   image of 2,4 in the line y=x is 4,2 Radius of circle S1= radius of circle S2=4 equation of circle S2(x-4)2+(y-2)2=16⇒x2+y2-8x-4y+4=0  ⟹· (i)  Equation of circle touching y=x at (1,1) can be taken as (x-1)2+(y-1)2+λ(x-y)=0 or, x2+y2+x(λ-2)+y (-λ-2)+2=0---------------(ii) As this is orthogonal to S2⇒2λ-22·(-4)+2-λ-22·(-2)=4+2⇒-4λ+8+2λ+4=6⇒λ=3 required equation of circle is x2+y2+x-5y+2=0 Radius =14+254-2=26-84=184=32
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring