Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let us consider the equation cos4⁡xa+sin4⁡xb=1a+b,x∈0,π2,a,b>0For the given equation, which of the following is correctThe value of sin2x in terms of a and b isThe value of sin8⁡xb3+cos8⁡xa3 is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

sin4⁡xb=cos4⁡xa

b

sin⁡xa=cos⁡xb

c

sin4⁡xb2=cos4⁡xa2

d

sin2⁡xa=cos2⁡xb

e

ab

f

ba+b

g

b2−a2a2+b2

h

a2+b2b2−a2

i

1(a+b)2

j

1(a+b)3

k

1(a+b)4

l

1a3+b3

answer is , , .

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

We have, cos4⁡xa+sin4⁡xb=1a+b=cos2⁡x+sin2⁡xa+b⇒cos2⁡xcos2⁡xa−1a+b=sin2⁡x1a+b−sin2⁡xb⇒cos2⁡xbcos2⁡x−asin2⁡xa(a+b)a=sin2⁡xbcos2⁡x−asin2⁡xb(a+b)⇒1−sin2⁡xa=sin2⁡xb⇒Sin2x=ba+b and cos2⁡x=aa+b We have, cos4⁡xa+sin4⁡xb=1a+b=cos2⁡x+sin2⁡xa+b⇒cos2⁡xcos2⁡xa−1a+b=sin2⁡x1a+b−sin2⁡xb⇒cos2⁡xbcos2⁡x−asin2⁡xa(a+b)a=sin2⁡xbcos2⁡x−asin2⁡xb(a+b)⇒1−sin2⁡xa=sin2⁡xb⇒sin2⁡x=ba+b and cos2⁡x=aa+b  We have, cos4⁡xa+sin4⁡xb=1a+b=cos2⁡x+sin2⁡xa+b⇒cos2⁡xcos2⁡xa−1a+b=sin2⁡x1a+b−sin2⁡xb⇒cos2⁡xbcos2⁡x−asin2⁡xa(a+b)a=sin2⁡xbcos2⁡x−asin2⁡xb(a+b)⇒1−sin2⁡xa=sin2⁡xb⇒sin2⁡xb=ba+b and cos2⁡x=aa+b⇒b3+sin2⁡x3xa3=b4b3(a+b)4+a3a3(a+b)4
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring