Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let us consider the equation cos4⁡xa+sin4⁡xb=1a+b,x∈0,π2 ;a,b>0cos8xa3+sin8xb3 isThe value of sin2x in terms of a and b is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

1/a+b

b

1a+b2

c

1a+b3

d

1a+b4

e

ab

f

ba+b

g

b2−a2a2+b2

h

a2+b2b2−a2

answer is , .

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

we have,  cos4⁡xa+sin4⁡xb=1a+b=cos2⁡x+sin2⁡xa+b⇒ cos2⁡xcos2⁡xa−1a+b=sin2⁡x1a+b−sin2⁡xb⇒ cos2⁡xbcos2⁡x−asin2⁡xa(a+b)=sin2⁡xbcos2⁡x−asin2⁡xb(a+b)⇒ cos2⁡xa=sin2⁡xb⇒ 1−sin2⁡xa=sin2⁡xb⇒ sin2⁡x=ba+b and cos2⁡x=aa+b∴ sin8⁡xb3+cos8⁡xa3=b4b3(a+b)4+a4a3(a+b)4=1(a+b)3we have,  cos4⁡xa+sin4⁡xb=1a+b=cos2⁡x+sin2⁡xa+b⇒ cos2⁡xcos2⁡xa−1a+b=sin2⁡x1a+b−sin2⁡xb⇒ cos2⁡xbcos2⁡x−asin2⁡xa(a+b)=sin2⁡xbcos2⁡x−asin2⁡xb(a+b)⇒ cos2⁡xa=sin2⁡xb⇒ 1−sin2⁡xa=sin2⁡xb⇒ sin2⁡x=ba+b and cos2⁡x=aa+b∴ sin8⁡xb3+cos8⁡xa3=b4b3(a+b)4+a4a3(a+b)4=1(a+b)3
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
Let us consider the equation cos4⁡xa+sin4⁡xb=1a+b,x∈0,π2 ;a,b>0cos8xa3+sin8xb3 isThe value of sin2x in terms of a and b is