Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let x = 4 be a directrix to an ellipse whose centre is at the origin and its eccentricity is 12. If P(1,β),β>0 is a point on this ellipse, then the equation of the normal to it at P is: 4x-2y=k then k is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

1

b

2

c

3

d

4

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The ecentricity is  e=12 Given that the directrix is x=4Hence ae=4it gives a=2, by substituting the eccentricity valueb2=a21−e2=41−14=3Equation of the ellipse is x24+y23=1Since P1,β is a point on the ellipseSubstitute the point in the equation of the ellipseHence, P1,32 is given pointThe equation of the normal is a2xx1+b2yy1=a2e2Substitute the appropriate values, we get 4x−2y=1
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring