Q.

Let x,y,z be real numbers with x≥y≥z≥π12 such that x+y+z=π2 and let P=cosx·siny·cosz then

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

Minimum value of P is 18

b

Minimum value of P is 14

c

Maximum value of P is 2+34

d

Maximum value of P is 2+38

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

(A,D)P=12cos⁡x[sin⁡(y+z)+sin⁡(y−z)]≥12cos⁡x⋅sin⁡(y+z)=12cos2⁡x But x=π2−(y+z)≤π2−2⋅π12=π3∴P≥18  since y≥π12,and z≥π12⇒y+z≥2π12  Again, P=12cos⁡z[(sin⁡(x+y)−sin⁡(x−y))]P≤12cos2⁡z=1+cos⁡2z4⇒P≤2+38  since z≥π12⇒2z≥π6⇒cos2z≤cosπ6=32
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon