Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let y(x) be the solution of the differential equation (xlogx)dydx+y=2xlogx,(x≥1) then y (e) is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

e

b

0

c

2

d

2e

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

dydx+1x ln⁡xy=2 I.F. =e∫1x ln⁡xdx=eln(ln⁡x)=ln x Sol of the D.E is y(ln⁡x)=∫2 ln⁡xdx=2ln x∫1 dx-∫1x∫1dxdxy(ln⁡x)=2xln x-∫1dxy(ln⁡x)=2x(ln⁡x−1)+c  put x=10=−2+c→c=2y(ln⁡x)=2x(ln⁡x−1)+2 When x=ey=2e(1−1)+2y=2
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring