Q.
Let z=a+ib=reiθ where a,b,θ∈R and i=−1 then r=a2+b2=|z|and θ=tan−1ba=arg(z)now, |z|2=a2+b2=(a+ib)(a−ib)=zz¯⇒ 1z=z¯|z|2and z1z2z3….zn=z1z2z3…znif f(z)=1then f(z) is called unimodular. In this casef(z) can always be expressed as f(z)=eiα,α∈RAlso, eiα+eiβ=eiα+β22cosα−β2 and eiα−eiβ=eiα+β22isinα−β2 where α,β∈RIf z1=1,z2=2,z3=3 and z1+z2+z3=1 then 9z1z2+4z3z1+z2z3 is equal toThe value of tani lna−iba+ib (where i=−1 ) is equal toIf |z−3i|=3 (where i=−1 ) and argz∈(0,π/2) then cot(argz)−6z is equal to
see full answer
Start JEE / NEET / Foundation preparation at rupees 99/day !!
21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya
a
6
b
36
c
216
d
1296
e
2abb2−a2
f
2aba2−b2
g
a2+b2a2−b2
h
a2−b2a2+b2
i
0
j
-i
k
i
l
π
answer is