Q.

lf A, B, C are the angles of a given triangle ABC. If cosA cosB ,cos⁡C=3−18 and sinA sinB sin⁡C=3+38 ,thenThe value of tanA+ tanB +tanC isThe value of tanA tanB tanB tanC+tanC tanA isThe value of tanA, tanB and tanC are

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

3+33−1

b

3+43−1

c

6−33−1

d

3+23−1

e

5−43

f

5+43

g

6+3

h

6-3

i

1,3,2

j

1,3,2

k

1,2,3

l

1,3,2+3

answer is , , .

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

cos⁡Acos⁡Bcos⁡C=3−18,sin⁡Asin⁡Bsin⁡C=3+38⇒tan⁡Atan⁡Btan⁡C=3+33−1----iFor a triangle,tan⁡A+tan⁡B+tan⁡C=tan⁡Atan⁡Btan⁡C=3+33−1----iiNow,A+B+C=π⇒cos⁡(A+B+C)=cos⁡π ⇒cos⁡Acos⁡Bcos⁡C(1−tan⁡Atan⁡B−tan⁡Btan⁡C−tan⁡Ctan⁡A) ⇒tan⁡Atan⁡B+tan⁡Btan⁡C+tan⁡Ctan⁡A=5+43----iii From(i ), (ii) and (iii)tanA, tanB, tanC are the roots of the equationx3−3+33−1x2+(5+43)x−(3+23)=0----ivx = 1 is the root of above equation so,  (x−1){x2−(2+23)x+(3+23)}=0 (x−1)(x−3)(x−(2+3))=0 x=1,3,2+3tan⁡A=1,tan⁡B=3,tan⁡C=2+3Therefore, A=45∘,B=60∘,C=75∘cos⁡Acos⁡Bcos⁡C=3−18,sin⁡Asin⁡Bsin⁡C=3+38⇒tan⁡Atan⁡Btan⁡C=3+33−1----iFor a triangle,tan⁡A+tan⁡B+tan⁡C=tan⁡Atan⁡Btan⁡C=3+33−1----iiNow,A+B+C=π⇒cos⁡(A+B+C)=cos⁡π ⇒cos⁡Acos⁡Bcos⁡C(1−tan⁡Atan⁡B−tan⁡Btan⁡C−tan⁡Ctan⁡A) ⇒tan⁡Atan⁡B+tan⁡Btan⁡C+tan⁡Ctan⁡A=5+43----iii From(i ), (ii) and (iii)tanA, tanB, tanC are the roots of the equationx3−3+33−1x2+(5+43)x−(3+23)=0----ivx = 1 is the root of above equation so,  (x−1){x2−(2+23)x+(3+23)}=0 (x−1)(x−3)(x−(2+3))=0 x=1,3,2+3tan⁡A=1,tan⁡B=3,tan⁡C=2+3Therefore, A=45∘,B=60∘,C=75∘cos⁡Acos⁡Bcos⁡C=3−18,sin⁡Asin⁡Bsin⁡C=3+38⇒tan⁡Atan⁡Btan⁡C=3+33−1----iFor a triangle,tan⁡A+tan⁡B+tan⁡C=tan⁡Atan⁡Btan⁡C=3+33−1----iiNow,A+B+C=π⇒cos⁡(A+B+C)=cos⁡π ⇒cos⁡Acos⁡Bcos⁡C(1−tan⁡Atan⁡B−tan⁡Btan⁡C−tan⁡Ctan⁡A) ⇒tan⁡Atan⁡B+tan⁡Btan⁡C+tan⁡Ctan⁡A=5+43----iii From(i ), (ii) and (iii)tanA, tanB, tanC are the roots of the equationx3−3+33−1x2+(5+43)x−(3+23)=0----ivx = 1 is the root of above equation so,  (x−1){x2−(2+23)x+(3+23)}=0 (x−1)(x−3)(x−(2+3))=0 x=1,3,2+3tan⁡A=1,tan⁡B=3,tan⁡C=2+3Therefore, A=45∘,B=60∘,C=75∘
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon