Q.

A line through  A(−5,−4) with slope tanθ  meets the lines x+3y+2=0, 2x+y+4=0, x−y−5=0 at B, C, D respectively, such that  15AB2+10AC2=6AD2then

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

15AB=cosθ+3sinθ

b

10AC=2cosθ+sinθ

c

6AD=cosθ−sinθ

d

Slope of  the line is -23

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

A line through  A(−5,−4) with slope tanθ is x+5cosθ=y+4sinθ=r Any point on the line is =(−5+rcosθ,−4+rsinθ)If this lies on x+3y+2=0, we have −5+rcosθ+3(−4+rsinθ)+2=0∴r=15AB=cosθ+3sinθsimilarly, we get, 10AC=2cosθ+sinθ and 6AD=cosθ−sinθFrom conditions, (cosθ+3sinθ)2+(2cosθ+sinθ)2=(cosθ−sinθ)2⇒(2cosθ+3sinθ)2=0⇒tanθ=−23
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon