Q.

For non-negative integers s and r, let sr=s!r!(s−r)! if r≤s0 if r>s For positive integers m and n ,  Let g(m,n)=∑p=0m+n f(m,n,p)n+ppwhere for any nonnegative integer p,f(m,n,p)=∑i=0p min+ipp+np−i Then which of the following statements is/are TRUE?

see full answer

Want to Fund your own JEE / NEET / Foundation preparation ??

Take the SCORE scholarship exam from home and compete for scholarships worth ₹1 crore!*
An Intiative by Sri Chaitanya

a

g(m,n)=g(n,m) for all positive integers m,n

b

g(m,n+1)=g(m+1,n) for all positive integers m,n

c

g(2m,2n)=2g(m,n) for all positive integers m,n

d

g(2m,2n)=(g(m,n))2 for all positive integers m,n

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

solvingf(m,n,p)=∑i=0p mCin+iCp⋅p+nCp-inow , mCi⋅n+iCp⋅p+nCp−i= mCi⋅(n+i)!p!(n−p+i)!×(n+p)!(p−i)!(n+i)!= mCi×(n+p)!p!×1(n−p+i)!(p−i)!= mCi×(n+p)!p!n!×n!(n−p+i)!(p−i)!= mCin+pCp⋅nCp−i mCi⋅nCp−i=m+nCpf(m,n,p)=n+pCp⋅m+nCpf(m,n,p) n+pCp=m+nCp Now g(m,n)=∑p=0m+n f(m,n,p) n+pCpg(m,n)=∑p=0m+n m+nCpg(m,n)=2m+n (A) g(m,n)=g(n,m) (B) g(m,n+1)=2m+n+1g(m+1,n)=2m+1+n (D) g(2m,2n)=22m+2n=2m+n2=(g(m,n))2
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon