Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The normal at a point P on the ellipse x2+4y2=16 meets  the x -axis at Q . If M is the midpoint of the line segment PQ , then the locus of M intersects the latus rectums of the  given ellipse at points

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

(±(35)/2,±2/7)

b

(±(35)/2,±19/7)

c

(±23,±1/7)

d

(±23,±43/7)

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Normal at P is given by 4xsec⁡ϕ−2ycosec⁡ϕ=12∴Q≡(3cos⁡ϕ,0) Let mid-point of PQ be M(α,β) . ∴α=3cos⁡ϕ+4cos⁡ϕ2=72cos⁡ϕ or cos⁡ϕ=27α and β=sin⁡ϕ Using cos2⁡ϕ+sin2⁡ϕ=1 , we have 449α2+β2=1 or 449x2+y2=1----(1) Now, the latus rectum to above ellipse is x=±23-----(2) Solving (1) and (2), we have 4849+y2=1 or y=±17 The points of intersection are (±23,±1/7) .
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring