Q.

The normal at a point P on the ellipse x2+4y2=16 meets  the x -axis at Q . If M is the midpoint of the line segment PQ , then the locus of M intersects the latus rectums of the  given ellipse at points

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

(±(35)/2,±2/7)

b

(±(35)/2,±19/7)

c

(±23,±1/7)

d

(±23,±43/7)

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Normal at P is given by 4xsec⁡ϕ−2ycosec⁡ϕ=12∴Q≡(3cos⁡ϕ,0) Let mid-point of PQ be M(α,β) . ∴α=3cos⁡ϕ+4cos⁡ϕ2=72cos⁡ϕ or cos⁡ϕ=27α and β=sin⁡ϕ Using cos2⁡ϕ+sin2⁡ϕ=1 , we have 449α2+β2=1 or 449x2+y2=1----(1) Now, the latus rectum to above ellipse is x=±23-----(2) Solving (1) and (2), we have 4849+y2=1 or y=±17 The points of intersection are (±23,±1/7) .
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon