Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The number of ordered pairs (m, n), m, n∈{1,2,…,100} such that 7m+7n is divisible by 5 is

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

1250

b

2000

c

2500

d

5000

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Note that 7r(r∈N) ends in 7, 9, 3 or 1 (corresponding to  r = 1, 2, 3 and 4 respectively.)Thus 7m+7n cannot end in 5 for any values of m, n ∈ N.In other words, for 7m+7n to be divisible by 5, it should end in 0.For 7m+7n to end in 0, the forms of m and n should be as follows:Thus, for a given value of m there are just 25 values of n forwhich 7m+7n ends in 0. [For instance, if m=4r then n =2, 6, 10, …, 98]∴ there are 100 × 25 = 2500 ordered pairs (m, n) forwhich 7m+7n is divisible by 5.
Watch 3-min video & get full concept clarity

courses

No courses found

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon