Q.

A parabola touches the bisectors of the angle obtained by the lines x+2y+3=0 and 2x+y+3=0 at the points (1,1) and (0,-2) .

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

Focus of parabola is 15,-75

b

length of latus rectum is 16253/2

c

Focus of parabola is 25,75

d

length of latus rectum is 1653/2

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

The equations of the bisectors are given by x-y=0 and x+y+2=0 The bisectors intersect at the point (-1,-1)  ,which lies on the directrix since the angular bisectors are perpendicular. let M=0,-2, N=1,1 Focus S is the foot of ⊥ from P to MN i.e. point of intersection of lines MN(3x-y-2=0) and PS(x+3y+4=0)  PS is perpendicular to MN and passing through P solve the equations MN and PS , we get   Focus  S is 15,-75MS=25,NS=425 Length of latus rectum =222542525+425=16253/2 (∵ H.M. of segments of focal chord is semi latus-rectum)
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon