Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A parabola touches the bisectors of the angle obtained by the lines x+2y+3=0 and 2x+y+3=0 at the points (1,1) and (0,-2) .

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

Focus of parabola is 15,-75

b

length of latus rectum is 16253/2

c

Focus of parabola is 25,75

d

length of latus rectum is 1653/2

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The equations of the bisectors are given by x-y=0 and x+y+2=0 The bisectors intersect at the point (-1,-1)  ,which lies on the directrix since the angular bisectors are perpendicular. let M=0,-2, N=1,1 Focus S is the foot of ⊥ from P to MN i.e. point of intersection of lines MN(3x-y-2=0) and PS(x+3y+4=0)  PS is perpendicular to MN and passing through P solve the equations MN and PS , we get   Focus  S is 15,-75MS=25,NS=425 Length of latus rectum =222542525+425=16253/2 (∵ H.M. of segments of focal chord is semi latus-rectum)
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring