Q.
In a plane, if the magnitude of the projection vector Of the vector α i^+βj^ on 3i^+j^ is 3and if α=2+3β, then possible value(s) of αis (are)Let a and b be real numbers such that the function is fx=−3ax2−2,x<1bx+a2,x≥1differentiable for all real values of x. Then possiblevalue(s) of a is(are)Let ω≠1be a complex cube root of unity. If 3−3ω+2ω24n+3+2+3ω−3ω24n+3+−3+2ω+3ω24n+3=0, then possible value(s)of n is(are)Let the harmonic mean of two positive real numbers a and b be 4. If q is a positive real number such that a,5,q,bis an arithmetic progression, then the value(s) of q−a is(are)
see full answer
Start JEE / NEET / Foundation preparation at rupees 99/day !!
21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya
answer is A-P;Q,B-P;Q,C-P;Q;S;T,D-Q;T.
(Unlock A.I Detailed Solution for FREE)
Ready to Test Your Skills?
Check your Performance Today with our Free Mock Test used by Toppers!
Take Free Test
Detailed Solution
A The projection of α i^+βj^ on the vector 3i^+j^ is 3Hence, 3α +β2=33α +β=23substitute α =2+3β32+3β+β=2323+3β+β=23β=0 and α =2B fx=−3ax2−2x<1bx+a2x≥1Ltx→1−fx=Ltx→1+fx−3a−2=b+a2−a2−3a−2=bf1x=−6axx<1bx>1f11−=f11+−6a=b−a2−3a−2=−6aa2−3a+2=0a=1,a=2C 3−3ω+2ω24n+3+2+3ω−3ω24n+3+−3+2ω+3ω24n+3=0 3−3ω+2ω2=21+ω2+1−3ω=−5ω+12+3ω−3ω2=21+ω+ω−3ω2=ω−5ω2=ω−5ω+1−3+2ω+3ω2=−3+2ω+ω2+ω2=−5+ω2=ω2−5ω+1−5ω+14n+31+ω4n+3+ω24n+3=0n=1,n=2,n=4,n=5D 2aba+b=4⇒ab=2a+b⇒b=2aa−2a,5,q,b are in APa+d=5⇒d=5−ab=a+3d=2aa−2⇒a+35−a=2aa−2⇒2a2−17a+30=0⇒a=6 or 52q−a=2,5
Watch 3-min video & get full concept clarity