Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The sequence S=i+2i2+3i3+4i4+⋯ up to 100 terms simplifies to, where i=−1

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

50(1−i)

b

25i

c

25(1+i)

d

100(1−i)

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

S=i+2i2+3i3+⋯+100i100S⋅i=i2+2i3+⋯+99i100+100i101S(1−i)=i+i2+i3+⋯+i100−100i101S(1−i)=i+i2+i3+i4+i5+i6+i7+i8⇒ S(1−i)=0+0+⋯+i97+i98+i99+i100−100i⇒ S=−100i1−i=−100i(1+i)(1−i)(1+i)⇒ S=−50(i−1)∴ S=50(1−i)
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
The sequence S=i+2i2+3i3+4i4+⋯ up to 100 terms simplifies to, where i=−1