Q.

The set of all real values of λ for which the function f(x)=1-cos2x·(λ+sinx),x∈-π2,π2, has exactly one maxima and exactly one minima, is:

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

−32,32−0

b

−12,12−0

c

−32,32

d

−12,12

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

f(x)=1-Cos2x(λ+sinx)  =Sin2x(λ+sinx)f1(x)=sin2xCosx+(λ+sinx)2sinxcosx=sinxcosx(2λ+3sinx)For maximum or minimum,f1(x)=0  ⇒sinx=0 or sinx=-2λ3 As there is exactly one max. and exactly one min, f'(x)=0 has exactly 2 roots -1<2λ3<1 and -2λ3≠0  ⇒λ∈-32,32-{0}
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The set of all real values of λ for which the function f(x)=1-cos2x·(λ+sinx),x∈-π2,π2, has exactly one maxima and exactly one minima, is: