Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A seven digit number is in the form of abcdefg⁡(g,f,e, etc. are digits at units, tens,  hundreds place etc.) where ae>f>g . Then the number of such possible numbers is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

1960

b

4800

c

7608

d

4704

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The minimum value of  d will be 4 i) If d=4 , then the number of seven digit numbers possible is 3C3⋅4C3=4 [as a,b,c can be chosen from 1,2 or 3 and similarly e,f,g can be chosen from 0,1,2 or 3 ]  ii) If d=5 , then the number of seven digit numbers possible is 4C3⋅5C3=40 [as a,b,c can be chosen from 1,2,3 or 4 and similarly e,f,g can be chosen from 0,1,2,3 or4 ] iii) If d=6 , then the number of seven digit numbers possible is 5C3⋅6C3=200 [as a,b,c can be chosen from 1,2,3,4 or 5 and similarly e,f,g can be chosen from 0,1,2,3,4 or 5] iv) If d=7 , then the number of seven digit numbers possible is 6C3⋅7C3=700 [as a,b,c can be chosen from 1,2,3,4,5 or 6 and similarly e,f,g can be chosen from 0,1,2,3,4,5,6 or 7]  v) If d=8 , then the number of seven digit numbers possible is 7C3⋅8C3=1960 [as a,b,c can be chosen from 1,2,3,4,5,6 or 7 and similarly e,f,g can be chosen from 0,1,2,3,4,5,6 or 7]  vi) If d=9 , then the number of seven digit numbers possible is 8C3⋅9C3=4704 [as a,b,c can be chosen from 1,2,3,4,5,6,7 or 8 and similarly e,f,g can be chosen from 0,1,2,3,4,5,6,7 or 8] Total number of numbers is 4+40+200+700+1960+4704=7608  Therefore, the correct answer is (3) .
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
personalised 1:1 online tutoring