1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
1+x 1n (x+x2+1))≥(1+x2) for x≥0
b
1+x 1n (x+x2+1))≤(1+x2) for x≥0
c
1+x 1n (x+x2+1))≠(1+x2) for x≥0
d
1+x 1n (x+x2+1)) #(1+x2) for x≥0
answer is A.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
Let f(x)=1+xlogex+x2+1−1+x2⇒ f′(x)=lnx+x2+1+xx+x2+1 1+2x2x2+1−2x21+x2⇒ f′(x)=1nx+x2+1≥0∀x≥0so, f(x) increases when x≥0hence x≥0⇒f(x)≥f(0) Thus, 1+xlnx+x2+1−1+x2≥0 for x≥0 So, 1+xlnx+x2+1≥1+x2 for x≥0