Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

A solution curve of the differential equation x2+xy+4x+2y+4dydx-y2=0,x>0, passes through the point 1,3. Then the solution curve is

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

intersects y=x+2 exactly at one point

b

intersects y=x+2 exactly at two points

c

intersects y=(x+2)2

d

does NOT intersect y=(x+3)2

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given equation is x+22+yx+2dydx-y2=0  Let x+2=X, y=YX2+XYdY−Y2dX=0dYdX=Y2X2+XYY=vX⇒dvdX+v=v2v+1             ⇒XdvdX=−vv+1          ⇒ v+1vdv=−1XdX         ⇒v+logv=−logX+logc ⇒YX+logY=logc⇒ yx+2+logy=logcit passes through 1,3⇒1+log3=logctherefore yx+2+logy=1+log3option 1: if y=x+2 then x+2x+2+logy=1+log3    logy=log3  ⇒y=3 hence 1,3 is common solutionoption3 : if y=x+22 then x+22x+2+logx+22=1+log3⇒x+2+logx+22=1+log3, no value of x satisfies.option 4: if y=x+32 then x+32x+2+logx+32=1+log3,no value of x satisfies.
Watch 3-min video & get full concept clarity

courses

No courses found

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
A solution curve of the differential equation x2+xy+4x+2y+4dydx-y2=0,x>0, passes through the point 1,3. Then the solution curve is