Q.

A solution curve of the differential equation x2+xy+4x+2y+4dydx-y2=0,x>0, passes through the point 1,3. Then the solution curve is

see full answer

Want to Fund your own JEE / NEET / Foundation preparation ??

Take the SCORE scholarship exam from home and compete for scholarships worth ₹1 crore!*
An Intiative by Sri Chaitanya

a

intersects y=x+2 exactly at one point

b

intersects y=x+2 exactly at two points

c

intersects y=(x+2)2

d

does NOT intersect y=(x+3)2

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given equation is x+22+yx+2dydx-y2=0  Let x+2=X, y=YX2+XYdY−Y2dX=0dYdX=Y2X2+XYY=vX⇒dvdX+v=v2v+1             ⇒XdvdX=−vv+1          ⇒ v+1vdv=−1XdX         ⇒v+logv=−logX+logc ⇒YX+logY=logc⇒ yx+2+logy=logcit passes through 1,3⇒1+log3=logctherefore yx+2+logy=1+log3option 1: if y=x+2 then x+2x+2+logy=1+log3    logy=log3  ⇒y=3 hence 1,3 is common solutionoption3 : if y=x+22 then x+22x+2+logx+22=1+log3⇒x+2+logx+22=1+log3, no value of x satisfies.option 4: if y=x+32 then x+32x+2+logx+32=1+log3,no value of x satisfies.
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon