Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Solution of differential equation dydx+xsin2⁡y=sin⁡ycos⁡y is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

tan⁡y=(x−1)+Ce−x

b

cot⁡y=(x−1)+Ce−x

c

tan⁡y=(x−1)ex+C

d

cot⁡y=(x−1)ex+C

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

dydx+xsin2⁡y=sin⁡ycos⁡ycos⁡ec2ydydx+x=cot⁡y Let −cot⁡y=vdvdx+v=xIF =e∫1dx=exsol: vex=∫exx dx∴ −cot⁡y⋅ex=x∫exdx-∫1∫exdxdx⇒cot⁡y=(x−1)+Ce−x
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
Solution of differential equation dydx+xsin2⁡y=sin⁡ycos⁡y is