Q.

The solution to the differential equation sin⁡xdydxcos⁡y=dydx+sin⁡ycos⁡xdydx is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

y =0

b

cx2−y=sin−1⁡x

c

cx−y=sin−1⁡c

d

y=x2−1−sin−1⁡x2−1x

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given equation is sin⁡xdydx−y=dydx⇒y=xdydx−sin−1⁡dydxAgain differentiating we getdydx=dydx+xd2ydx2−11−dydx2d2ydx2⇒d2ydx2=0 or x=11−dydx2⇒dydx=c or dydx2=1−1x2using, dydx=c   in given equation   we get    y=cx−sin−1⁡cAlso for particular value of c = 0,y = 0 is also a solution.Finally using dydx2=1−1x2 in (i) we get i.e., y=x2−1−sin−1⁡x2−1x
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon