Story
NEET AITS
Story
Mock Tests
Story
Live Class
Story
JEE AITS

Questions  

The solution to the differential equation sinxdydxcosy=dydx+sinycosxdydx is

Unlock the full solution & master the concept.

Get a detailed solution and exclusive access to our masterclass to ensure you never miss a concept
By Expert Faculty of Sri Chaitanya
a
y =0
b
cx2−y=sin−1⁡x
c
cx−y=sin−1⁡c
d
y=x2−1−sin−1⁡x2−1x

Ready to Test Your Skills?

Check Your Performance Today with our Free Mock Tests used by Toppers!

detailed solution

Correct option is A

Given equation is sin⁡xdydx−y=dydx⇒y=xdydx−sin−1⁡dydxAgain differentiating we getdydx=dydx+xd2ydx2−11−dydx2d2ydx2⇒d2ydx2=0 or x=11−dydx2⇒dydx=c or dydx2=1−1x2using, dydx=c   in given equation   we get    y=cx−sin−1⁡cAlso for particular value of c = 0,y = 0 is also a solution.Finally using dydx2=1−1x2 in (i) we get i.e., y=x2−1−sin−1⁡x2−1x

ctaimg

Similar Questions

Equation of the curve passing through the point (3,4) and satisfying the differential equationydydx2+xydydxx=0  can be

Want to Improve your productivity
talk to our academic experts now !!

counselling
india
+91

whats app icon