Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The solution of the differential equation x2dydxcos⁡1x−ysin1x=−1 When y→−1 as x→∞ is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

y=sin(1x)−cos(1x)

b

y=x+1xsin(1x)

c

y=cos(1x)+sin(1x)

d

y=x+1xcos(1x)

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

dydx−yx2tan⁡1x=−sec⁡1x⋅1x2 I. F=e∫-1x2tan1xdx=eln sec1x=sec⁡1x Solution of the D.E is ysec⁡1x=−∫sec2⁡1x⋅1x2dxysec⁡1x=tan⁡1x+c........(1) Given y→−1  and x→∞-sec1∞=tan1∞+c  -sec0=tan0+c c=−1substituting  in (1)ysec⁡1x=tan⁡1x-1y=sin⁡1x−cos⁡1x
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring