Q.
The solution of the equation dydx=x(2logx+1) siny+ycosy is
see full answer
High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET
🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya
a
ysiny=x2logx+x22+c
b
ycosy=x2logx+1+c
c
ycosy=x2logx+x22+c
d
ysiny=x2logx+c
answer is D.
(Unlock A.I Detailed Solution for FREE)
Detailed Solution
∫ycosy+sinydy=∫2x lnx+xdx∫ycosy dy+∫siny dy=2∫xlnx dx+∫x dx integrate only first termsy∫cosy dy-∫1 ∫cosy dydy+∫siny dy=2 lnx∫x dx-∫1x∫x dxdx+∫x dx ysiny-∫siny dy+∫siny dy=2lnx x22-∫1xx22dx+∫x dx y siny=x2ln x-22∫x dx+∫x dx ⇒ysiny=x2ln x+c
Watch 3-min video & get full concept clarity