Q.

The solution of the equation dydx=x(2log⁡x+1) siny+ycosy  is

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

ysiny=x2logx+x22+c

b

ycosy=x2logx+1+c

c

ycosy=x2logx+x22+c

d

ysiny=x2logx+c

answer is D.

(Unlock A.I Detailed Solution for FREE)

Detailed Solution

∫ycosy+sinydy=∫2x lnx+xdx∫ycosy dy+∫siny dy=2∫xlnx dx+∫x dx integrate only first termsy∫cosy dy-∫1 ∫cosy dydy+∫siny dy=2  lnx∫x dx-∫1x∫x dxdx+∫x dx ysiny-∫siny dy+∫siny dy=2lnx x22-∫1xx22dx+∫x dx y siny=x2ln x-22∫x dx+∫x dx ⇒ysiny=x2ln x+c
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon