Q.
The sum of coefficients of integral powers of r in the binomial expansion of (1−2x)50is
see full answer
Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!
Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya
a
12350+1
b
12350
c
12350−1
d
12250+1
answer is A.
(Unlock A.I Detailed Solution for FREE)
Ready to Test Your Skills?
Check your Performance Today with our Free Mock Test used by Toppers!
Take Free Test
Detailed Solution
Let Tr+1 be the general term in the expansion of (1−2x)50∴ Tr+1=50Cr(1)50−r−2x1/2r=50Cr2rxn/2(−1)rFor the integral power of x, r should be even integer. Sum of coefficients =∑r=025 50C2r(2)2r =12(1+2)50+(1−2)50=12350+1Aliter We have,(1−2x)50=C0−C12x+C2(2x)2+…+C50(2x)50…(i) (1+2x)50=C0+C12x+C2(2x)2+…+C50(2x)50… (ii) On adding Eqs. (i) and (ii), we get(1−2x)50+(1+2x)50=2C0+C2(2x)2 +…+C50(2x)50⇒ (1−2x)50+(1+2x)502=C0+C2(2x)2+…+C50(2)50⇒ (−1)50+(3)502=C0+C2(2)2+…+C50(2)50⇒ 1+3502=C0+C2(2)2+…+C50(2)50
Watch 3-min video & get full concept clarity