Q.
The sum of coefficients of integral powers of r in the binomial expansion of (1−2x)50is
see full answer
High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET
🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya
a
12350+1
b
12350
c
12350−1
d
12250+1
answer is A.
(Unlock A.I Detailed Solution for FREE)
Detailed Solution
Let Tr+1 be the general term in the expansion of (1−2x)50∴ Tr+1=50Cr(1)50−r−2x1/2r=50Cr2rxn/2(−1)rFor the integral power of x, r should be even integer. Sum of coefficients =∑r=025 50C2r(2)2r =12(1+2)50+(1−2)50=12350+1Aliter We have,(1−2x)50=C0−C12x+C2(2x)2+…+C50(2x)50…(i) (1+2x)50=C0+C12x+C2(2x)2+…+C50(2x)50… (ii) On adding Eqs. (i) and (ii), we get(1−2x)50+(1+2x)50=2C0+C2(2x)2 +…+C50(2x)50⇒ (1−2x)50+(1+2x)502=C0+C2(2x)2+…+C50(2)50⇒ (−1)50+(3)502=C0+C2(2)2+…+C50(2)50⇒ 1+3502=C0+C2(2)2+…+C50(2)50
Watch 3-min video & get full concept clarity