Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The sum of coefficients of integral powers of r in the binomial expansion of (1−2x)50is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

12350+1

b

12350

c

12350−1

d

12250+1

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let Tr+1 be the general term in the expansion of (1−2x)50∴ Tr+1=50Cr(1)50−r−2x1/2r=50Cr2rxn/2(−1)rFor the integral power of x, r should be even integer. Sum of coefficients =∑r=025 50C2r(2)2r =12(1+2)50+(1−2)50=12350+1Aliter We have,(1−2x)50=C0−C12x+C2(2x)2+…+C50(2x)50…(i) (1+2x)50=C0+C12x+C2(2x)2+…+C50(2x)50… (ii) On adding Eqs. (i) and (ii), we get(1−2x)50+(1+2x)50=2C0+C2(2x)2 +…+C50(2x)50⇒ (1−2x)50+(1+2x)502=C0+C2(2x)2+…+C50(2)50⇒ (−1)50+(3)502=C0+C2(2)2+…+C50(2)50⇒ 1+3502=C0+C2(2)2+…+C50(2)50
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring