Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The sum of the series 1+2⋅2+3⋅22+4⋅23+5⋅24+…+100⋅299 is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

99⋅2100-1

b

100⋅2100

c

99⋅2100

d

99⋅2100+1

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let S=1+2⋅2+3⋅22+4⋅23+5⋅24 +…+100⋅299∴ 2S=1⋅2+2⋅22+3⋅23+…+99⋅299  +100⋅2100 Substracting, we get −S=1+1⋅2+1⋅22+…+1⋅299−100⋅2100=1+2+22+…+299−100⋅2100=12100−12−1−100⋅2100=2100−1−100⋅2100∴S=100⋅2100−2100+1=99⋅2100+1.
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring