Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The sum of the squares of the perpendiculars on any tangent to the  ellipse x2/a2+y2/b2=1 from two points on the minor axis each at a distance  a2−b2 from the centre is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

2a2

b

2b2

c

a2+b2

d

a2−b2

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The eccentricity e of the given ellipse is given by g2=1−b2/a2⇒a2−b2=a2e2  . So the point on the minoraxis, i.e. y-axis at a distance  a2−b2 from the  centre  (0, 0) of the ellipse are (0, ± ae).  The equation of the tangent at any point (a cos θ, b sin θ) on the ellipse is xacos⁡θ+ybsin⁡θ=1   So the required sum is  aesin⁡θb−1cos2⁡θa2+sin2⁡θb22+−aesin⁡θb−1cos2⁡θa2+sin2⁡θb22=(aesin⁡θ−b)2+(aesin⁡θ+b)2b2cos2⁡θ+a2sin2⁡θ×a2=2a2a2e2sin2⁡θ+b2b2cos2⁡θ+a2sin2⁡θ =2a2a2−b2sin2⁡θ+b2b2cos2⁡θ+a2sin2⁡θ=2a2
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
The sum of the squares of the perpendiculars on any tangent to the  ellipse x2/a2+y2/b2=1 from two points on the minor axis each at a distance  a2−b2 from the centre is