Suppose a, b are two real numbers and f(n)=αn+βn. LetΔ=31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)If Δ=k(α−1)2(β−1)2(α−β)2, then k is equal to
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
1
b
4αβ
c
9
d
α2β2
answer is A.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
Δ=1+1+11+α+β1+α2+β21+α+β1+α2+β21+α3+β31+α2+β21+α3+β31+α4+β4=1111αβ1α2β21111αβ1α2β2=Δ12where Δ1=1111αβ1α2β2Applying C3→C3−C2 and C2→C2−C1 we getΔ1=1001α−1β−α1α2−1β2−α2=(α−1)(β−α)11α+1β+α=(α−1)(β−1)(β−α)Thus Δ=(α−1)2(β−1)2(α−β)2∴ k=1