Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Suppose f is differentiable on R and a≤f′(x)≤b for all x∈R where a,b>0. If f(0)=0, then

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

f(x)  ≤ min(ax, bx)

b

f(x)  ≥ max(ax, bx)

c

a  ≤  f(x)  ≤  b

d

ax  ≤  f(x)  ≤  bx

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

For x > 0.   Applying Lagrange’s theorem on [0, x]  we have c  ∈  (0,  x)such that f(x)x  =  f(x)−f(0)x−0  =  f'(c) But a≤f′(c)≤b so a≤f(x)x≤b⇒ax≤f(x)≤bx,x>0 Similarly for x<0_ applying Lagrange's theorem for [x,0⌉,  we have ax≤f(x)≤bx
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
Suppose f is differentiable on R and a≤f′(x)≤b for all x∈R where a,b>0. If f(0)=0, then