The general solution of the equation1−sinx+...+−1nsinnx+......1+sinx+...+sinnx+......=1−cos2x1+cos2xis
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
−1nπ3+nπ,∀n∈I
b
−1nπ6+nπ,∀n∈I
c
−1n+1π6+nπ,∀n∈I
d
−1n−1π3+nπ,∀n∈I
answer is B.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
1−sinx+...+−1nsinnx+......1+sinx+...+sinnx+......=1−cos2x1+cos2x⇒11+sinx.1−sinx1=2sin2x2cos2x⇒2sin2x+sinx−1=0⇒sinx=−1±1+84=−1±34⇒sinx=−1 or sinx=12Since sinx≠−1 , we have sinx=12=sinπ6∴x=nπ+−1nπ6