Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The tangents to x2+y2=a2 having inclinations α and β intersect at P. If cot⁡α+cot⁡β=0 then the locus of P is

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

answer is 3.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let the coordinates of P be (h, k). Let the equation of a tangent from P(h, k) to the circlex2+y2=a2 be y=mx+a1+m2Since P(h, k) lies on y=mx+a1+m2.∴ k=mh+a1+m2⇒ (k−mh)2=a1+m2⇒ m2h2−a2−2mkh+k2−a2=0This is a quadratic in m. Let the two roots bem1 and m2.Then,m1+m2=2hkh2−a2But, tan a= m1 , tan⁡β=m2 and it is given that cot⁡α+cot⁡β=0⇒ 1m1+1m2=0⇒m1+m2=0⇒2hkk2−a2=0⇒hk=0Hence, the locus of (h, k) is xy = 0.
Watch 3-min video & get full concept clarity

courses

No courses found

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
The tangents to x2+y2=a2 having inclinations α and β intersect at P. If cot⁡α+cot⁡β=0 then the locus of P is