Q.

The tangents to x2+y2=a2 having inclinations α and β intersect at P. If cot⁡α+cot⁡β=0 then the locus of P is

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 3.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let the coordinates of P be (h, k). Let the equation of a tangent from P(h, k) to the circlex2+y2=a2 be y=mx+a1+m2Since P(h, k) lies on y=mx+a1+m2.∴ k=mh+a1+m2⇒ (k−mh)2=a1+m2⇒ m2h2−a2−2mkh+k2−a2=0This is a quadratic in m. Let the two roots bem1 and m2.Then,m1+m2=2hkh2−a2But, tan a= m1 , tan⁡β=m2 and it is given that cot⁡α+cot⁡β=0⇒ 1m1+1m2=0⇒m1+m2=0⇒2hkk2−a2=0⇒hk=0Hence, the locus of (h, k) is xy = 0.
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon