Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The tangents to x2+y2=a2 having inclinations α and β intersect at P. If cot⁡α+cot⁡β=0 then the locus of P is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 3.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let the coordinates of P be (h, k). Let the equation of a tangent from P(h, k) to the circlex2+y2=a2 be y=mx+a1+m2Since P(h, k) lies on y=mx+a1+m2.∴ k=mh+a1+m2⇒ (k−mh)2=a1+m2⇒ m2h2−a2−2mkh+k2−a2=0This is a quadratic in m. Let the two roots bem1 and m2.Then,m1+m2=2hkh2−a2But, tan a= m1 , tan⁡β=m2 and it is given that cot⁡α+cot⁡β=0⇒ 1m1+1m2=0⇒m1+m2=0⇒2hkk2−a2=0⇒hk=0Hence, the locus of (h, k) is xy = 0.
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
personalised 1:1 online tutoring