The total number of six-digit natural numbers that can be made with the digits 1 ,2, 3, 4, if all digits are to appear in the same number at least once is
see full answer
High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET
🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya
a
1560
b
840
c
1080
d
480
answer is A.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
There can be two types of numbers.(i) Any one of the digits 1, 2, 3, 4 appears thrice and the remaining digits only once, i.e., of the type 1, 2,3,4, 4, 4, etc. Number of ways of selection of digit which appears thrice is 4C1. Then the number of numbers of this type is (6!/3!)×4C1=480.(ii) Any two of the digits 1, 2, 3, 4 appears twice and the remaining two only once, i.e., of the type 1,2,3,3, 4, 4, etc. The number of ways of selection of two digits which appear twice is 4C2. Then the number of numbers of this type. is 6!/(2!2!)×4C2. Therefore, the required number of numbers is 480 + 1080=1560.
Not sure what to do in the future? Don’t worry! We have a FREE career guidance session just for you!
The total number of six-digit natural numbers that can be made with the digits 1 ,2, 3, 4, if all digits are to appear in the same number at least once is