Q.
In a triangle XYZ let a,b,and c be the lengthsof the sides opposite to the angles X,Y and Zrespectively. If 2a2−b2=c2 and λ=sinX−YsinZ ,then possible value(s) of n for which cosnπλ=0is (are)In a triangle XYZ let a,b,and c be the lengthsof the sides opposite to the angles X,Y and Zrespectively. If 1+cos2X−2cos2Y=2sinXsinY, then possible value(s) of ab is (are)In R2 let 3i^+j^,i^+3j^ and βi^+1−βj^ bethe position vectors of X,Yand Z with respectto the origin O, respectively.If the distance ofZ from the bisector of acute angle of OX→withOY→ is 32 then possible value(s) of β is (are)Suppose that Fα denotes the area of theregion bounded by x=0,x=2,y2=4x and y=αx−1+αx−2+αx,where α∈0,1 ,Then the value(s) of Fα+832,when α=0 andα=1 is (are)
see full answer
Start JEE / NEET / Foundation preparation at rupees 99/day !!
21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya
answer is A-P;R;S,B–P,C–P;Q,D–S;T .
(Unlock A.I Detailed Solution for FREE)
Ready to Test Your Skills?
Check your Performance Today with our Free Mock Test used by Toppers!
Take Free Test
Detailed Solution
A 2a2−b2=c2⇒2sin2X−sin2Y=sin2Z⇒2sinX+YsinX−Y=sin2Z⇒sinX−YsinZ=12⇒λ=12cosnπλ=0 ⇒cosnπ2=0n=1,3,5B 1+cos2X−2cos2Y=2sinXsinY⇒1+1−2sin2X−21−2sin2Y=2sinXsinY⇒sin2X+sinXsinY−2sin2Y=0sinXsinY=−2 or1but −2 is not possible⇒sinXsinY=1⇒ab=1C Bisectors of OX→&OY→ are x=y or x+y=0∴β-1-β2=32⇒2β-1=3⇒β=1,2 (D) For α=1 y=x−1+x−2+x=3−x ; x<11+x ; 1≤x<23x−3; x≥2 ∴Area =F1=122+3×1+122+3×1− 022xdx=5−823⇒F1+823=5 For α=0, y=3. ∴Area=F0=2×3−∫0222dx=6−823⇒F0+823=6
Watch 3-min video & get full concept clarity