Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Which of the following is always correct

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

If f'(x)>0 ∀ x∈ domain, then f(x) must be one-one

b

If f'(x)<0 ∀ x∈ domain, then f(x)  must be one-one

c

If |f(x)|  be continuous at x=a , then f(x)  is also continuous at x=a

d

If f(x)  is continuous at x=a , f(a)=2  and x=a  is the point of local minima of f(x) , then [f(x)] , where [.] denotes greatest integer function, is also continuous at x=a

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

In (A) f'(x)>0  for every x∈Df ⇒    f(x)  is one-one ex.  f(x)=tanx In (B), f'(x)<0 ∀ x∈Df⇒f  is one-oneex.  f(x)=cotx In (C), |f(x)|  is continuous ⇒  f(x)  is continuous ex. f(x) ={1    : x<0−1 : x≥0  is discontinuous at x=0 But |f(x)|=1 ∀x∈R  which is continuous ∴  (A), (B), (C) are not correctIn (D), f(a)=2 , x=a  is a point of local minimum and f(x)  is continuous ∴  f(a+h)>2,  f(a−h)>2 ⇒ [f(a+h)]=[f(a−h)]=2 Hence [f(x)]  is also continuous at x=a ∴  (D) is correct.
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring