1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
A ∩ (B ~ C) = A ∩ B ~ (A ∩ C)
b
A ~ (A ∩ B) = A ~ B
c
A ~ (B ~ C) = (A ~ B) ∪ (A ∩ C)
d
A ~ (B ∆ C ) = (A ~ B) ∆ (A ~ C)
answer is D.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
For equality (a),A ∩ (B ~ C) = A ∩ (B ∩ C')= ϕ ∪ (A ∩ B ∩ C')= (A ∩ B∩ A') ∪ (A ∩ B ∩ C')= A ∩ B ∩ (A' ∪ C')= A∩ B ~ (A ∩ C)For equality (b),A ~ (A ∩ B) = A ∩ (A' ∪ B')= (A ∩ A') ∪ (A ∩ B')= ∅ ∪ (A ∩ B') = A ∩ B' = A ~ BFor equality (c)A ~ (B ~ C) = A ~ (B ∩ C') = A ∩ (B' ∪ C)= (A ∩ B') ∪ (A ∩ C)= (A ~ B) » (A « C)For (d) LetA={1, 2, 3, 4, 5}, B={3, 4, 5},C={1, 2, 3}So, B∆C={4, 5} ∪ {1, 2}={1, 2, 4, 5}Thus A (B∆C)={3}A~ B={1, 2}; A~ C={4, 5}Therefore (A ~B) ∆ (A~ C)=({1, 2}~ {4, 5})∪({4, 5}~ {1, 2})= {1, 2} ∪ {4, 5} = {1, 2, 4, 5).Hence A ~ (B ∆ C) ≠ (A ~ B) ∆ (A ~ C)