For x∈R, tanx+12tanx2+122tanx22+…+12n−1tanx2n−1 is equal to
see full answer
High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET
🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya
a
2cot2x−12n−1cotx2n−1
b
12n−1cotx2n−1−2cot2x
c
cotx2n−1−cot2x
d
none of these
answer is B.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
We have,tanx=cotx−2cot2x⇒12tanx2=12cotx2−cotx⇒12tanx22=12cotx22−cotx2⇒122tanx22=122cotx22−12cotx2Similarly, we have123tanx23=123cotx23−122cotx22........................................................ ........................................................12n−1tanx2n−1=12n−1cotx2n−1−12n−2cotx2n−2Adding a II the above results, we gettanx+12tanx2+122tanx22+…+12n−1tanx2n−1=12n−1cotx2n−1−2cot2x