Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

For x,y,z,t∈R,sin−1⁡x+cos−1⁡y+sec−1⁡z≥t2−2πt+3πThe value of x + y + z is equal toThe principal value of   cos−1⁡(cos⁡5t2) isThe value of cos−1⁡(min{x,y,z}) is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

1

b

0

c

2

d

-1

e

3π2

f

π2

g

π3

h

2π3

i

0

j

π2

k

π

l

π3

answer is , , .

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

sin−1⁡x∈[−π2,π2]cos−1⁡y∈[0,π] sec−1⁡z∈[0,π2)∪(π2,π]⇒ sin−1⁡x+cos−1⁡y+sec−1⁡z≤π2+π+π=5π2Also,t2−2πt+3π=t2−2π2t+π2−π2+3π =(t−π2)2+5π2≥5π2The given inequation exists if equality holds, i.e.,  L.H.S.=R.H.S.=5π2⇒x=1,y=−1,z=−1andt=π2    sin−1⁡x∈[−π2,π2]cos−1⁡y∈[0,π] sec−1⁡z∈[0,π2)∪(π2,π]⇒ sin−1⁡x+cos−1⁡y+sec−1⁡z≤π2+π+π=5π2Also,t2−2πt+3π=t2−2π2t+π2−π2+3π =(t−π2)2+5π2≥5π2The given inequation exists if equality holds, i.e.,  L.H.S.=R.H.S.=5π2⇒x=1,y=−1,z=−1andt=π2⇒cos−1⁡(cos⁡5t2)=cos−1⁡(cos⁡(5π2))=π2  sin−1⁡x∈[−π2,π2]cos−1⁡y∈[0,π] sec−1⁡z∈[0,π2)∪(π2,π]⇒ sin−1⁡x+cos−1⁡y+sec−1⁡z≤π2+π+π=5π2Also,t2−2πt+3π=t2−2π2t+π2−π2+3π =(t−π2)2+5π2≥5π2The given inequation exists if equality holds, i.e.,  L.H.S.=R.H.S.=5π2⇒x=1,y=−1,z=−1andt=π2⇒cos−1⁡(cos⁡5t2)=cos−1⁡(cos⁡(5π2))=π2 cos−1⁡(min{x,y,z})=cos−1⁡(−1)=π
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring