Q.

If vector A→=cosωti^+sinωtj^  and  B→=cosωt2i^+sinωt2j^  are functions of time,  then the value of t at which they are orthogonal to each other is

see full answer

Want to Fund your own JEE / NEET / Foundation preparation ??

Take the SCORE scholarship exam from home and compete for scholarships worth ₹1 crore!*
An Intiative by Sri Chaitanya

a

t=πω

b

t=0

c

t=π4ω

d

t=π2ω

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Two vectors A→ and B→ are orthogonal to each other, if  their scalar product is zero i.e. A→·B→=0 .  Here, A→=cosωti^+sinωtj^  and   B→=cosωt2i^+sinωt2j^∴A→·B→=(cosωti^+sinωtj^)·cosωt2i^+sinωt2j^=cosωtcosωt2+sinωtsinωt2(∵i^·i^=j^·j^=1 and i^·j^=j^·i^=0)=cosωt-ωt2(∵cos(A-B)=cosAcosB+sinAsinB) But A→·B→=0 (as A→ and B→ are orthogonal to each other) ∴  cosωt-ωt2=0cosωt-ωt2=cosπ2 or ωt-ωt2=π2ωt2=π2 or t=πω
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon