If vector A→=cosωti^+sinωtj^ and B→=cosωt2i^+sinωt2j^ are functions of time, then the value of t at which they are orthogonal to each other is
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
t=πω
b
t=0
c
t=π4ω
d
t=π2ω
answer is A.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
Two vectors A→ and B→ are orthogonal to each other, if their scalar product is zero i.e. A→·B→=0 . Here, A→=cosωti^+sinωtj^ and B→=cosωt2i^+sinωt2j^∴A→·B→=(cosωti^+sinωtj^)·cosωt2i^+sinωt2j^=cosωtcosωt2+sinωtsinωt2(∵i^·i^=j^·j^=1 and i^·j^=j^·i^=0)=cosωt-ωt2(∵cos(A-B)=cosAcosB+sinAsinB) But A→·B→=0 (as A→ and B→ are orthogonal to each other) ∴ cosωt-ωt2=0cosωt-ωt2=cosπ2 or ωt-ωt2=π2ωt2=π2 or t=πω